
Start Looping
Title Slide

Presented by: Derek Maciak
CTO/Partner
Surround Technologies
surroundtech.com | @SurroundTech

Uniting .NET and the IBM i:
Tools, Tips and Techniques.
October 7, 2016 – (11:00 AM-12:00 PM)

Virginia Beach IBM i User
Conference 2016

Today’s Speaker

Derek Maciak
CTO/Partner Surround Technologies

dmaciak@surroundtech.com | www.surroundtech.com

Socialize:

linkedin.com/company/128638

tweet me @SurroundTech

facebook.com/surroundtech

Agenda

What we’ll discuss:
The IBM .NET data provider can be utilized to enable .NET
applications to access data or call programs that reside on
the IBM i. This session will provide the best practices for
allowing windows, web and mobile applications to leverage
the power of the IBM i while following Service Oriented
Architecture (SOA) design principles. We will discuss tips
and techniques for connecting to the IBM i, accessing data,
and calling Programs(COBOL, RPG, Java, C, IBM i commands,
etc.) on the IBM i.

Agenda Objectives:

• Best Practices for connecting
.NET to the
IBM i using the .NET data
provider and following a
Service Oriented Architecture

• Best Practices for accessing
data using ADO.NET

• How to call programs using
stored procedures

• Ways to effectively reuse

existing 5250 screens in .NET

Connecting .NET to the IBM i

Best Practices:
1. Use an IBM i ADO.NET Data Provider
2. Use Exception Handling and Logging
3. Put Connection information in a configuration file
4. String Properties

○ Use Library List
○ Use Connection Pooling

5. Design for a Service Oriented Architecture (SOA)
6. Stream Data in Blocks using multiple calls

Agenda Objectives:

• Best Practices for connecting
.NET to the
IBM I using the .NET data
provider and following a
Service Oriented Architecture

• Best Practices for accessing
data using ADO.NET

• How to call programs using
stored procedures

• Ways to effectively reuse

existing 5250 screens in .NET

https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_home_pub_index

1. Use an IBM i ADO.NET Provider

OLEDB .NET Data Provider
[System.Data.OleDb]

OleDbConnection OleDbDataAdapter

OleDbCommand OleDbDataReader

ODBC .NET Data Provider
[System.Data.Odbc]

OdbcConnection OdbcDataAdapter

OdbcCommand OdbcDataReader

DB2 for IBM i .NET Provider
[IBM.Data.DB2.iSeries]

iDB2Connection iDB2DataAdapter

iDB2Command iDB2DataReader

DB2 for .NET Provider
[IBM.Data.DB2]

DB2Connection DB2DataAdapter

DB2Command DB2DataReader

DataTable

ADO.NET

DataSet

ODBC Driver IBMDA400 | IBMDASQL DB2 Connect

Target DB2 Database

BEST PERFORMANCE

U N M A N A G E D C O D E

1. ADO .NET Architecture

.NET Framework Data Provider

Connection

Command

DataReader

DataAdapter

DeleteCommand

UpdateCommand

InsertCommand

SelectCommand
Transaction

Parameters

DataSet

DataTableCollection

DataReader

DataTable

ConstraintCollection

DataColumnCollection

DataRowCollection

Database

XML

1. Benefits of ADO.NET

surroundtech.com | @surroundtech

.NET Managed Code (Targets the CLR)
– Better Performance
– No COM Interop Module
– No Marshalling of Data
– Memory Management
– Thread Execution Support
– Security
– Reliability
– Remoting
– Enforces strict type safety

1. IBM DB2 for IBM i .NET Provider

● Available as part of IBM i Access for Windows starting with V5R3M0 and IBM i Access Client Solutions
● Not a default install option

○ Must use Selective install with IBM i Access for Windows
○ Optional Windows Application Package that is part of IBM i Access Client Solutions

● Can connect to down-level OS/400 versions to V5R1
● Need TCP/IP connection from PC to IBM i
● Uses the Optimized host database server job (QZDASOINIT) on the IBM i
● .NET class needs to reference IBM.Data.DB2.iSeries
● 5.4 version supports .NET Framework 1.0 and 1.1
● 6.1 and 7.1 versions support .NET Framework 2.0 or later
● IBM i Access for Windows 7.1 is the most current version available and will connect to

any supported IBM i release.
● Always check and update to current Service Pack

surroundtech.com | @surroundtech

2. Use Exception Handling and Logging

● Don’t assume that nothing will go wrong
● Use try/catch blocks
● You can trap specific Exceptions and code a recovery
● iDB2SQLErrorException and the iDB2CommErrorException will be the most

common Exceptions thrown
● Suggest logging the exception

surroundtech.com | @surroundtech

2. Provider Specific Exceptions

3. Put Connection Information in a Config

● Soft coding the connection information allows you to easily configure the
connection properties without having to do a build

Configuration:

Loading Configuration at runtime:

4. Provider Specific Connection String Properties

4. Provider Specific Connection String Properties

● Naming (Default is “SQL”)
○ When set to “SQL” , a period(.) is used to separate schema. ex: schema.object
○ When set to “System”, a forward slash(/) is used to separate schema. ex:

schema/object

● Pooling (Default is “True”)
○ Allows reuse of connections by an application that frequently open/close

connections
○ Reused Connections open more quickly
○ Consider calling iDB2ProviderSettings.CleanupPooledConnections() when

application is about to end to make sure all pooled connections are
terminated

4. Provider Specific Connection String Properties

● LibraryList
○ List a schema names separated by commas
○ *USRLIBL can be used to add the library list for the User Profile of the

current host server job
○ Placing schemas before or after the *USRLIBL can control the referenced order
○ DefaultCollection should be added to the LibraryList
○ LibraryList is great for testing against different Libraries and for allowing

different User Profiles to access different Libraries

● DefaultCollection
○ If specified the default Schema is used for all unqualified object names
○ If Not specified

◌ If Naming is “SQL”, Default Collection is set to the
user ID that opened the connection

◌ If Naming is “System”, Default Collection is not set,
unqualified object names use the host server job’s library list

You may need to
support all of this!

5. Service Oriented Architecture

5. Service Oriented Architecture

Application Server (Windows Server)

.Net Framework

.NET Module Business
Process and Workflow

Client

Repurposed
5250 Screens

.NET Framework

.NET Module Data
Access Layer

3rd Party Service Wrapper

ADO.NET

Data Server (IBM I Server)

Existing
5250 Green

Screens

Stored
Procedures

3rd Party Services

DB2 Data
Store

6. Streaming Data in Blocks

● Useful when needing to output a lot of data

● A requestor can receive a block of data very quickly
in which the user can begin to work with

● Data should be accessed Asynchronously

● Useful to get around webserver message
size quotas

Database

Application Data

6. Streaming Data in Blocks

Demo

surroundtech.com | @surroundtech

Accessing Data for ADO.NET

Best Practices:
1. Using Connection Object
2. Using Command Object
3. DataReader vs. DataSet
4. Use Parameterized Queries
5. Choosing the correct Execution Method
6. Always Close and Dispose
7. Use the “Using” Statement in C#
8. Performing Transactions
9. Benefits of Stored Procedures

Agenda Objectives:

• Best Practices for connecting
.NET to the
IBM I using the .NET data
provider and following a
Service Oriented Architecture

• Best Practices for accessing
data using ADO.NET

• How to call programs using
stored procedures

• Ways to effectively reuse

existing 5250 screens in .NET

https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_home_pub_index

1. Using Connection Object

● Connection object for DB2 for IBM i .NET Provider is iDB2Connection
● In ADO.net, the Connection Object is used to Connect to a database
● Public Properties

○ ConnectionString - Use Provider specific connection string properties
○ ConnectionTimeout – Gets the time to wait while establishing a connection before

terminating and generating an error
● Public Methods

○ Open() – Opens a connection to the data source using the settings specified in the
ConnectionString

○ Close() – Closes a connection to the data source
○ CreateCommand() – Creates a new iDB2Command object for use with this connection
○ BeginTransaction() – Begins a database transaction for this connection using isolation

level
○ Dispose() - Releases the resources used by this connection.

2. Using Command Object
● Command object for DB2 for IBM i .NET Provider is iDB2Command
● In ADO.net, the Command Object is used to execute SQL statements or Stored Procedures against a data

source
● Public Properties

○ CommandText – Contains the SQL statement or stored procedure to run against a data source
○ CommandType – Values of StoredProcedure, TableDirect or Text specify how the CommandText

Property is interpreted
○ ConnectionTimeout – maximum number of seconds to wait for the command to execute before

terminating and generating an error. 0 = wait indefinitely.
○ Parameters – Collection of iDB2Parameters. Used with Parameterized Queries.

● Public Methods
○ Cancel() – Attempts to cancel execution of a command
○ Dispose() – Releases the resources used by this command
○ CreateParameter() – Creates a new instance of an iDB2Paramter Object. The return value parameter

could be input-only, output-only, bidirectional or a stored procedure. The default is Input.
○ ExecuteNonQuery() – Executes the command and ignores any result set
○ ExecuteReader() – Executes the command and returns an iDB2DataReader object
○ ExecuteScalar() – Executes the command and returns the first column of the first row in the result set

3. DataReader vs. DataSet

● Use DataSet when you:

○ are working with Tabular Data

○ Need minimal business logic

○ want to do minimal coding

○ Want to cache data locally in your application so that you can manipulate it

● Use DataReader when you:

○ need to quickly access data once, in a forward-only and read-only manner

○ are processing a large result set of data

○ want to use custom business entities

○ want to use a Service Oriented Architecture

4. Use Parameterized Queries

● Can improve performance

● Cleaner and more flexible code

● Prevents SQL Injection

5. Choosing Your Execution Method

Use ExecuteNonQuery

Use ExecuteScalar

Use ExecuteReader

Does your SQL
Statement return

result data?

Does the result
data consist of
a single item?

No

No

Yes

Yes

6. Close Connection and Dispose Objects

● Always Close() connection to the data source
○ Keeping connection open wastes system resources and may even prevent

others from connecting due to connection limits
○ Connection pooling will minimize the performance impact of opening and

closing connections

● Always Dispose() of Objects
○ Cleans up resources associated with an object
○ When Disposing iDB2Command, the IBM i host resources associated with the

object will be cleaned up

surroundtech.com | @surroundtech

7. Using Statement in C# vs. Dispose() Method

● Declare and instantiate an IDisposable object in a using statement

○ Provides a convenient syntax that ensures the correct use of
IDisposable objects

○ Causes the object itself to go out of scope as soon as Dispose() is
called

○ Ensures that Dispose is called even if an exception occurs while you
are calling methods in the object

surroundtech.com | @surroundtech

8. Performing Transactions

● Ensures that a set of database operations are performed with integrity

● A set of database operations can be committed permanently are rolled back in case a failure
occurs during a database operation

● All iDB2Commands will run under the same transaction within a connection that starts the
transaction

● The table(s) that are used within a transaction must be journaled

● To cancel changes made during the transaction, use the transaction’s Rollback() method

● To permanently commit changes made during the transaction to the database, use the
transaction’s Commit() method

● If Close() is issued during a transaction, it will be rolled back

● Supports only Local transactions (Single Connection) and not Distributed transactions (Multiple
Connections)

surroundtech.com | @surroundtech

9. Benefits of Stored Procedures

● Reduced client/server traffic

● Performance

● Efficient reuse of code and programming abstraction

● Enhanced security controls

● Reduced development cost and increased reliability

● Centralized security, administration and maintenance

● Can call a program on the IBM i written in a supported programming
language (COBOL, RPG, Java, C, IBM i commands, etc.)

surroundtech.com | @surroundtech

How to Call programs on the IBM i

Calling Stored Procedures:
● 2 Types of Stored Procedures

○ External
○ SQL

● 2 methods
○ Use CommandType.Text

◌ Set the CommandText to include the Call statement,
the stored procedure name, and the parameter
markers

○ Use CommandType.StoredProcedures
◌ Set the CommandText to the stored procedure

name only

● Use Execute Reader to read the results
● Use NextResult() Method to to read more than 1 result

Agenda Objectives:

• Best Practices for connecting
.NET to the
IBM I using the .NET data
provider and following a
Service Oriented Architecture

• Best Practices for accessing
data using ADO.NET

• How to call programs using
stored procedures

• Ways to effectively reuse

existing 5250 screens in .NET

https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_home_pub_index

R
e

tr
ie

v
in

g
 S

p
o

o
l
F

il
e

 H
e

a
d

e
r

R
e

tr
ie

v
in

g
 S

p
o

o
l
F

il
e

 D
e

ta
il

Spool File Retrieval

Request from .NET to Build
Spool File Header

Request from .NET to Select
FWSH records

Stored Procedure calls
RPG program

RPG program uses API to
retrieve spool file data and

creates FWSH records in QTEMP

Stored Procedure called
to Select FWSH records

from QTEMP

Step 1:

Step 2:

Return Request

Header record is selected from
UI and .NET requests detail

records to be created in FWSD

Request from .NET to select
detail records from qtemp/fwsd

RPG program uses to
call OLP

CL program is called to
create detailed records in

QTEMP/FWSD

Step 1:

Step 2:

Return Request

Store Procedure is
called to

Store Procedure is
called to select FWSD
records from QTEMP

How to Call programs in the IBM i

Demo

surroundtech.com | @surroundtech

Reuse 5250 Screens in .NET

DB2 UDB for
iSeries .NET
Provider

Web
Services

Agenda Objectives:

• Best Practices for connecting
.NET to the
IBM I using the .NET data
provider and following a
Service Oriented Architecture

• Best Practices for accessing
data using ADO.NET

• How to call programs using
stored

• Ways to effectively reuse

existing 5250 screens in .NET

https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_home_pub_index

Reuse 5250 Screens in .NET

Go from these To this

Reuse 5250 Screens in .NET

Demo

surroundtech.com | @surroundtech

Q&A
Thanks for watching!

Socialize:

linkedin.com/company/128638

tweet me @SurroundTech

facebook.com/surroundtech

Today’s Speaker:

Derek Maciak
[CTO / Partner]

dmaciak@surroundtech.com | www.surroundtech.com

Important Links

● IBM i Access
○ http://www-03.ibm.com/systems/power/software/i/access/index.html

● Redbook – Integrating DB2 Universal database for iSeries with
Microsoft ADO.NET
○ https://www.redbooks.ibm.com/abstracts/sg246440.html

surroundtech.com | @surroundtech

http://www-03.ibm.com/systems/power/software/i/access/index.html
https://www.redbooks.ibm.com/abstracts/sg246440.html

